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Abstract

A theory of viscoplasticity is formulated within a thermodynamic concept. The key point is the postulate of a
dynamic yield surface, which allows us to take advantage of the postulate of maximum dissipation to derive an
associated formulation of the evolutions laws for the internal variables without using penalty techniques that only

hold in the limit it when viscoplasticity degenerates to inviscid plasticity. Even a non-associated formulation is
presented. Within this general formulation, a particular format of the dynamic yield function enables us to derive
the static yield function in a consistent manner. Hardening, perfect and softening viscoplasticity is also de®ned in a
consistent manner. The approach even includes associated and non-associated viscoplasticity where corners exist on

the yield and potential surfaces. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Today there exist two major concepts when formulating viscoplastic models: the Perzyna or the
Duvaut±Lions format. In the Perzyna model, Perzyna (1971), the direction of viscoplastic ¯ow is in
general determined by the gradient of a plastic potential function calculated at the current stress point.
In the Duvaut±Lions model, Duvaut and Lions (1962), the concept of closest-point projection of the
stress onto a static yield surface is introduced and the direction of viscoplastic ¯ow is then determined
by the di�erence between the current stress and the closest-point projection. Here, we shall concentrate
on the Perzyna formulation. A thermodynamic formulation of the Duvaut±Lions model based on the
concept of additive split of the conjugated forces has recently been presented by Ristinmaa and Ottosen
(1998).

The postulate of maximum dissipation plays an important role in the thermodynamic treatment of
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inviscid plasticity and it leads to the associated plasticity formulation. This postulate is not a principle in
the sense of being a law of nature; instead it may be viewed simply as a convenient mathematical means
to ful®l the dissipation inequality. For Perzyna viscoplasticity, however, use of the postulate of
maximum dissipation has been restricted to rely on subtle regularization and penalty techniques, that
only hold in the limit when viscoplasticity degenerates to inviscid plasticity, e.g. Simo and Honein
(1990). Here we will introduce the concept of a dynamic yield surface and this will allow us to use the
postulate of maximum dissipation in a straightforward manner. Within this general formulation, a
particular format of the dynamic yield function enables us to derive the static yield function in a
consistent manner. This approach is then used to derive some of the well-known viscoplastic models and
it is shown that the Perzyna model can be given both an associated and a non-associated formulation.
Non-associated viscoplasticity follows when the postulate of maximum dissipation cannot be used. It is
also shown that a model with no elastic region ®ts into the formulation proposed and, as an example,
Odquist creep is derived.

The viscoplastic formulation proposed is shown to contain inviscid plasticity as a special case when
the total strain rate becomes in®nitely small and hardening, perfect and softening viscoplasticity is
de®ned in a consistent manner.

In the case of corner viscoplasticity, Mroz and Sharma (1980) present some of the di�erent methods
that can be used to handle corner viscoplasticity, although they focused on numerical issues. Here, we
shall also present a consistent thermodynamic theory for corner viscoplasticity and both associated
viscoplasticity and the non-associated case where the number of yield and potential surfaces may di�er
are treated.

It was argued by Simo et al. (1988) that Perzyna corner viscoplasticity in general, is not well de®ned
since it in the limit does not reduce to proper corner inviscid plasticity. This argument is based on the
idea that when recovering inviscid plasticity at a corner, all yield surfaces are active during this process.
However, we shall show that this conception is incorrect.

2. Thermodynamic basis

The assumption of small strains is made. This allows a decomposition of the total strain tensor into
an elastic part Ee

ij and a viscoplastic part Evp
ij , i.e.

Eij � Ee
ij � Evp

ij �1�

With y being the absolute temperature, let us consider the following form of Helmholtz's free energy
function c per unit volume

c � ce�Eij ÿ Evp
ij , y� � cp�ka, y� �2�

where ka denotes a set of viscoplastic variables, i.e. internal variables, which may be scalars or second-
order tensors. Moreover, the number of internal variables may be one, two or more and this is indicated
by the Greek subscript a. The decomposition (2) corresponds to the assumption that the instantaneous
elastic response does not depend on the internal variables ka, cf Lubliner (1972). This decomposition is
not necessary, but it has been chosen as it facilitates the exposition. With s being the entropy per unit
volume and sij the stress tensor, and Clausius±Duhem inequality then takes the form

ÿ _cÿ _ys� sij_Eijr0 �3�
for any admissible process; here a dot denotes the rate with respect to time. Whereas (3) expresses the

M. Ristinmaa, N.S. Ottosen / International Journal of Solids and Structures 37 (2000) 4601±46224602



non-negative mechanical entropy production, the non-negative thermal entropy production is expressed
by ÿqiy,i/yr 0 where qi is the heat ¯ux vector. As usual, this latter inequality is ful®lled trivially by
relating qi to the temperature gradient yi via Fourier's law. Taking the rate of (2) and substituting into
(3), we obtain that an allowable solution is given by

sij � @ce

@Eij
; s � ÿ@c

@y
� ÿ

�
@ce

@y
� @c

p

@y

�
�4�

and the dissipation inequality

g � ÿ @c
e

@Evp
ij

_Evp
ij ÿ

@cp

@ka
_kar0 �5�

De®ne the thermodynamic forces svp
ij conjugated to the ¯ux _Evp

ij and the thermodynamic forces Ka

conjugated to the ¯uxes _ka by

svp
ij � ÿ

@ce

@Evp
ij

; Ka � ÿ@c
p

@ka
�6�

Since @c e/@E vpij =ÿ@c e/@Eij, it appears that

svp
ij � sij �7�

i.e., the dissipation inequality takes the form

g � sij_E
vp
ij � Ka _kar0 �8�

Di�erentiation of (4a) then gives the rate of stress tensor

_sij � Dijkl�_Ekl ÿ _Evp
kl � �

@ 2ce

@Eij @y
_y where Dijkl � @ 2ce

@Eij @Ekl
�9�

We note that the elastic sti�ness tensor Dijkl is symmetric and in general not constant. However, we
shall assume Dijkl to depend only on the temperature y, i.e. Dijkl=Dijkl (y ). The rate of the
thermodynamic conjugated forces Ka is obtained by di�erentiation of (6b), i.e.

_Ka � ÿD�ab _kb ÿ @ 2cp

@ka @y
_y �10�

where the symmetric tensor D �ab is de®ned by

D�ab �
@ 2cp

@ka @kb
�11�

In general, we have D �ab=D �ab (kg, y ).

3. Dynamic yield function Ð evolution laws

From the thermodynamic formulation, the constitutive laws for the stress tensor sij (4a) and the
thermodynamic forces Ka (6b) were obtained, but no information is given about the evolution laws for
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the viscoplastic strains and the internal variables. The only restriction on these evolution laws is that the
second law of thermodynamics must be ful®lled, i.e. that the dissipation inequality (8) must be ful®lled.

However, before these evolution laws can be established, we have to de®ne a condition, which enables
us to determine whether viscoplastic behaviour occurs or purely elastic behaviour occurs. For this
purpose, we assume the existence of the following function

f � f �sij, Ka, _Evp
ij , _ka, y� �12�

This means that f depends on the ¯uxes _Evp
ij and _ka, the temperature y and the corresponding conjugated

forces sij and Ka, cf (8). The possible in¯uence of temperature is also re¯ected by Ka=Ka (kb, y ) as
apparent from (6) and (2). In order to detect whether viscoplastic loading occurs or elastic unloading
occurs, we make the following de®nition

f � 0, possibility for viscoplastic response

f < 0, elastic response �13�

and the condition f > 0 is not allowed. It appears that the expression f = 0 corresponds to what has
been termed the dynamic yield surface, cf Perzyna (1971) and Phillips and Wu (1973); however, contrary
to the present approach these authors did not pursue the implications of this concept. The dynamic
yield surface di�ers from the so-called static yield surface to be introduced later.

With these de®nitions, the evolution laws can now be derived by making use of the postulate of
maximum dissipation. We are then faced with the following problem: for given ¯uxes _Evp

ij and _ka and
temperature y, ®nd those stresses sij and forces Ka that minimize the quantity ÿg, where g is given by
(8), under the constraint f R 0, cf (13). Following, for instance, Luenberger (1984) p. 314, we are then
led to the following evolution laws

_Evp
ij � L

@f

@sij
; _ka � L

@ f

@Ka
�14�

and the Kuhn±Tucker relations given by

Lr0, fR0 and Lf � 0 �15�

For given temperature and ¯uxes _Evp
ij and _ka, f is required to be a convex and smooth function. The

evolution laws derived correspond to associated viscoplasticity and they certainly ful®l the dissipation
inequality. In view of (12), we may note that, in general, (14) are implicit equations in the ¯uxes _Evp

ij and
_ka:
It turns out to be possible to obtain a more general format, namely non-associated viscoplasticity.

Traditionally, the function f in (14) is then replaced by a potential function g that depend on the same
variables as f, i.e.

g � g�sij, Ka, _Evp
ij , _ka, y� �16�

cf (12). The following evolution laws are then postulated

_Evp
ij � L

@g

@sij
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_ka � L
@g

@Ka
Lr0, fR0 and Lf � 0 �17�

It appears that the non-associated formulation reduces to the associated formulation when g=f.
However, whereas the associated formulation ful®ls the dissipation inequality (8) just by requiring f to
be a convex function, it is more di�cult to ensure that the non-associated formulation (17) ful®ls the
dissipation inequality. To illustrate an allowable formulation in terms of (17) consider the following
situation: for given ¯uxes and temperature, let the potential function be smooth and convex in the sij,
Ka-space. The expression, g=C=constant then describes a surface in that space. If the value of g at the
origin of the space is less than C = constant, then it follows directly that formulation (17) ful®ls the
dissipation inequality (8), cf Eringen (1975).

4. Introduction of the static yield function

It turns out to be advantageous to simplify the general framework described above. For that purpose,
we choose a function �F that possesses the following properties

�F � �F�sij, Ka, _Evp
ij , _ka, y�r0 �18�

and

�F�sij, Ka, _Evp
ij � 0, _ka � 0, y� � 0; �F�sij, Ka, _Evp

ij 6� 0, _ka 6� 0, y� > 0 �19�

Moreover, we choose a function F=F(sij, Ka, y ) and express the dynamic yield function f as

f �sij, Ka, _Evp
ij , _ka, y� � F�sij, Ka, y� ÿ �F�sij, Ka, _Evp

ij , _ka, y� �20�

From (19) and (20), it then follows that

f �sij, Ka, _Evp
ij � 0, _ka � 0, y� � F�sij, Ka, y� �21�

Moreover, (18) and (20) results in

fRF �22�
The format of the dynamic yield function given by (20) presents a more restricted group of materials
than those given by (12), but it will turn out that this restricted group of materials is su�ciently general
to encompass a number of well-known viscoplasticity formulations. In particular, it allows us to derive
the static yield surface in a consistent manner, as will be shown next.

The conditions for viscoplastic response or elastic response given by (13) and the Kuhn±Tucker
relations (17) are expressed in terms of the dynamic yield function f and we shall now show that these
conditions can be expressed in terms of the function F.

Suppose ®rst that F<0; from (22) it follows that f<0, i.e. (17) implies L=0. Suppose next that F=
0; in accordance with (20) we then have f=ÿ �F: If L> 0 then (17) shows that _Evp

ij 6�0 and _ka 6�0, i.e. (19)
shows that �F > 0 and f=ÿ �F then implies f < 0, which, according to (17), results in L=0, i.e. we have
obtained a contradiction. If L=0 (and still assuming F = 0 and thereby f=ÿ �F), we obtain from (19)
that �F=0 and thereby f = 0, which according to (17) is acceptable. These remarks lead to the
observation that F R 0c L=0. Suppose next that L=0; then (19) implies �F=0 and (20) then gives
f=F. Since fR 0, we obtain FR 0. Summarizing, we have
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FR0, L � 0 �23�

We are then left with

F > 0, L > 0 �24�

With (23) and (24) we are now able to evaluate whether viscoplastic or elastic loading occurs just by
evaluating the sign of the function F(sij, Ka, y ). Moreover, while f=0 holds during viscoplastic loading,
it follows from (22) that the surface f=0 will contain the surface F=0.

Assume that the thermodynamic forces Ka and temperature y are given and ®xed. From (23) and (24),
we found that if the stress state is located inside the surface F = 0 then an elastic response occurs
whereas a stress state outside the surface F=0 implies development of viscoplasticity. In the limit when
the surface F=0 is approached from outside, then the viscoplastic e�ects approach zero.

It follows that the surface F=0 describes the so-called static yield surface and in the expression F(sij,
Ka, y ), the forces Ka describe the hardening parameters. Moreover, it is recalled that the dynamic yield
surface f = 0 passes through the current stress point and is obtained by an enlargement of the static
yield surface. We have then shown that by taking the dynamic yield function f in the format (20), the
static yield function F emerges in a natural manner.

The multiplier L enters the evolution laws (17) and it still remains to obtain an expression that
determines this quantity. In the usual Perzyna formulation, L is simply chosen to be any non-negative
quantity. Here, however, we have a priori required f = 0 to hold during viscoplasticity and since f
depends on the ¯uxes _Evp

ij and _ka, which, in turn, depends on L, the function f and L must be related.
To identify this relation as simply as possible, we shall assume that the potential function g given by
(16) can be written in the following simpli®ed form

g � G�sij, Ka, y� �25�

This simpli®ed form turns out to be su�ciently general to encompass most well-known viscoplasticity
formulations. It follows that the evolution Eqs. (17) now take the form

_Evp
ij � L

@G

@sij
; _ka � L

@G

@Ka
�26�

During viscoplastic loading, we have f=0 and (20) then gives

F�sij, Ka, y� � �F�sij, Ka, _Evp
ij , _ka, y� �27�

Insertion of (26) results in

F�sij, Ka, y� � �F

�
sij, Ka, L

@G

@sij
, L

@G

@Ka, y

�
during viscoplastic loading �28�

It appears that if the functions F and �F are known then this expression enables us to determine the
multiplier L; we shall later see examples of this approach.

We found that the multiplier L can be determined from (28), but that this requires the potential
function g to be given in the form (25). Let us now investigate the consequences of (25) for associated
viscoplasticity. Associated viscoplasticity requires that @g/@sij=@f/@sij and @g/@Ka=@f/@Ka; with (25) and
(20) these requirements become @G/@sij=@F/@sijÿ@ �F/@sij and @G/@Ka=@F/@Kaÿ@ �F/@Ka. Since G(sij,
Ka, y ), F(sij, Ka, y ) and �F(sij, Ka, _Evp

ij , _ka, y ), these requirements can only be ful®lled if @ �F/@sij=0 and
@ �F/@Ka=0. If follows that
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Associated viscoplasticity requires: �F � �F�_Evp
ij , _ka, y� and G�sij, Ka, y� � F�sij, Ka, y�

�)_Evp
ij � L

@ f

@sij
� L

@F

@sij
; _ka � L

@f

@Ka
� L

@F

@Ka

�29�

With these remarks, let us return to the thermodynamic formulation and in particular the evolution laws
and ful®lment of the dissipation inequality (8). For associated viscoplasticity, these evolution laws follow
from the postulate of maximum dissipation and they are given by (14) in the general case and by (29)
for the more restricted group of materials de®ned by (20) and (25). The postulate of maximum
dissipation in combination with the dynamic yield function f being convex and smooth ensures that the
dissipation inequality is ful®lled. When the dynamic yield function is given by (20) and associated
viscoplasticity is considered, cf (29), the requirements of convexity and smoothness of f becomes
convexity and smoothness of the static yield function F.

It appears that we have obtained a convenient thermodynamic formulation of associated
viscoplasticity without having to rely on subtle regularization or penalty techniques, cf Simo and Honein
(1990), that only holds for the Perzyna formulation in the limit when viscoplasticity degenerates to
inviscid plasticity. Instead, the present formulation only hinges on the concept of a dynamic yield
function, which enables us to make use of the postulate of maximum dissipation. Moreover, by suitable
choices of the involved functions the concept of a static yield function emerges in a natural manner.

For non-associated plasticity, the evolution laws are in the general case given by (17) and they ful®l
the dissipation inequality (8) if the potential function ful®ls the requirements stated in the discussion
following (17). For the more restricted group of materials de®ned by (20) and (25), the evolution laws
are given by (26) and they ful®l the dissipation inequality if: (1) G is a smooth and convex function in
the sij, Ka-space; the expression G=C= constant then describes a surface in that space; (2) the value of
G at the origin of the space is less than C=constant.

To substantiate the type of viscoplasticity de®ned by (20) and (25), we shall later show that it contains
a variety of previously proposed viscoplastic theories as special cases. Before that, we shall discuss the
relation between viscoplasticity and inviscid plasticity.

5. The limit case of inviscid plasticity

It turns out that the viscoplastic formulation de®ned by (20) and (25) reduces in the limit to classical
inviscid plasticity. To achieve this, some preliminary derivations are necessary. For simplicity, isothermal
conditions will be assumed.

From the static yield function, F=F(sij, Ka), we obtain

_F � @F

@sij
_sij � @F

@Ka

_Ka �30�

With (10) and the evolution Eqs. (26) we have

_Ka � ÿLD�ab
@G

@Kb
�31�

Use of (31) in (30) leads to

_F � @F

@sij
_sij ÿHL �32�
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where the modulus in H is de®ned by

H � @F

@Ka
D�ab

@G

@Kb
�33�

If Hooke's incremental law (9) is inserted into (32) and use is made of the ¯ow rule (26) for _Evp
ij , we ®nd

that

_F � @F

@sij
Dijkl_Ekl ÿ AL �34�

where the quantity A is de®ned by

A � H� @F

@sij
Dijkl

@G

@skl
> 0 �35�

This quantity will be assumed to be positive. If inviscid plasticity were considered with F being the yield
function and G the potential function, it then appears that the modulus H de®ned by (33) and the
positive quantity A de®ned by (35) correspond to the usual de®nitions and that H then is the plastic
modulus.

For development of viscoplasticity, F > 0 is required which, in turn, implies that L > 0, cf (24).
Consider now a situation where _Eij � 0 holds, i.e. pure relaxation is considered. Since L> 0 and A> 0,
it follows from (34) that F

.
< 0; eventually, we will therefore reach the situation where F= 0 holds and

at that state the viscoplastic development will stop.
Let us next consider the load case where the prescribed total strain rate is di�erent from zero, i.e.

_Eij 6� 0: If this total strain rate is in®nitely small, we conclude from the observation above that we will, in
the limit, approach a state where F = 0 holds. According to (13) f = 0 holds during development of
viscoplasticity and as (20) shows that f=Fÿ �F where both f=0 and F=0, it follows that �F=0 holds in
the limit when the total strain rate is in®nitely small.

For an in®nitely small total strain rate, we therefore conclude that �F=0 and F= 0 hold in the limit.
However, with the evolution laws (26) and expression (19) it follows that the only situation where �F=0
holds in the limit is when L approaches zero. In turn, this implies that (28), which otherwise provides
our expression for the unknown quantity L, cannot in this limit case be used to determine L; in fact,
with L approaching zero, we have according to (19) that �F4 0 and as also F4 0, (28) simply becomes
an identity.

With the observation that for the limiting case of an in®nitely small total strain rate, (28) cannot be
used to determine the quantity L, we must look for other means to cope with this problem. The
solution is provided by the fact that F=0 holds in the limit when the total strain rate approaches zero;
this implies that also F

.
=0 holds in the limit. From (34) we then obtain the following expression for L

L � 1

A

@F

@sij
Dijkl_Ekl �36�

The evolution laws (26) read

_Evp
ij � L

@G

@sij
; _ka � L

@G

@Ka
�37�

Expressions (36) and (37) hold when F= 0 and viscoplasticity development requires that L> 0; on the
other hand, we know from (23) that if F< 0 then L=0. These observations lead to the conclusion that
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(36) and (37) hold always where L and F are subjected to the following conditions

Lr0; FR0; LF � 0 �38�
It appears that if L in (36)±(38) is renamed and now called l. and if the viscoplastic strain rate _Evp

ij is
renamed and now called the inviscid plastic strain rate _Evp

ij , then (36)±(38) become identical to those
appearing in inviscid plasticity theory. Here expression (38) are the usual Kuhn±Tucker conditions and
the quantity l. is usually called the plastic multiplier. The evolutions laws (37) correspond to non-
associated inviscid plasticity and if the potential function G is replaced by the static yield function F, we
arrive at the associated inviscid plasticity formulation, which certainly ful®ls the dissipation inequality.

We have then shown that the present very general framework for viscoplasticity de®ned by (20) and
(25) reduces in a consistent manner to classical inviscid plasticity when the total strain rate is in®nitely
small. In that case, the response corresponds to the so-called static stress±strain curves.

6. Hardening, perfect and softening viscoplasticity

For simplicity isothermal conditions will be considered. As discussed above, the static stress±strain
response is obtained in the limit when the prescribed total strain rate is very slow. For stress states on
this curve, the static yield condition is ful®lled, i.e. F(sij, Ka)=0 and the case of uniaxial loading is
shown in Fig. 1.

Assume that the loading history in some way has bought us to point A or point C and consider then
the following response when the stress state is held constant. In both cases, the viscoplastic strain will
increase. Starting at point A located above the rising part of the static stress±strain curve, the point (s,
E ) will move and eventually be located at point B on the static stress±strain curve and the total
viscoplastic strain is bounded. However, starting at point C located above the falling part of the static
stress±strain curve, the increasing viscoplastic strain will move the point (s, E ) more and more away
from the static stress±strain curve; the total viscoplastic strain in unbounded.

Noting that F > 0 holds both at points A and C, we may generalize these results and conclude that
for a constant stress state, hardening means _F< 0 whereas softening means _F> 0. Since in the present
case we have sij � 0, we conclude from (32) that

H > 0 hardening viscoplasticity

Fig. 1. Uniaxial static stress±strain curve.
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H � 0 perfect viscoplasticity

H < 0 softening viscoplasticity �39�
We recall that H as de®ned by (33) is identical to the de®nition of the plastic modulus in inviscid
plasticity and that (39) is identical to the de®nitions made in inviscid plasticity.

Finally, consider point D during a situation where the stress state is held constant. In the ®rst place,
we will approach the static yield surface, i.e. _F<0 and (32) then shows that hardening occurs. At some
state, _F=0 will be achieved and a state of perfect viscoplasticity will emerge (H= 0); eventually, a state
of softening viscoplasticity � _F > 0) will be reached and the viscoplastic strain will increase in an
unbounded manner.

7. Perzyna formulation

We shall next illustrate that the restricted group of viscoplastic materials de®ned by (20) and (25)
which possesses both a dynamic yield surface and a static yield surface also contains a variety of
previously proposed viscoplastic theories as special cases. The central issue is the choice of the function
�F de®ned by (18) as well as at the choice of the static yield function �F, cf (20) and of the potential
function G, cf (25) and (26).

We shall start with the Perzyna formulation and choose the function F
-
de®ned by (18) as

�F � j�Z�y�_Evp
eff � �40�

where Z is a positive parameter that may depend on the temperature y and where _Evp
eff is the e�ective

viscoplastic strain rate de®ned by

_Evp
eff �

��������������
2
3
_Evp
ij _Evp

ij

q
�41�

For the static yield function F, we take any convex function given by

F � F�sij, Ka, y� �42�
Since f=0 holds during viscoplastic development, we obtain with (20) that

F � j�Z�y�_Evp
eff � �43�

This expression is similar to (27). Referring to (18) and (19), the function j must ful®l jr0 as well as
j(0)=0. Let us also assume that j is a monotonic increasing function of its argument. It then possesses
an inverse function f such that f�j�Z�y�_Evp

eff���Z�y�_Evp
eff : From (43) we then obtain

f�F � � Z�y�_Evp
eff �44�

From the ¯ow rule (26) and (41), we have _Evp
eff�L

������������������������������������������
2
3�@G=@sij ��@G=@sij �

q
: Insertion into (44) gives

f�F � � Z�y�L
�����������������������
2

3

@G

@sij

@G

@sij

s
�45�

This expression is similar to (28) and it allows us to determine the unknown quantity L. Before this is
done, we introduce the generalized McCauley bracket h i de®ned as
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hf�F �i �
�
0 if FR0
f�F � if F > 0

�46�

In view of the loading conditions (23) and (24), we can now determine L from (45) and insert into the
evolution Eqs. (26) to obtain

_Evp
ij �
hf�F �i
Z�

@G

@sij
; _ka � hf�F �iZ�

@G

@Ka
�47�

where

Z� � Z�y�
�����������������������
2

3

@G

@sij

@G

@sij

s
�48�

and where Z� may be viewed as a viscosity parameter. It appears that the choice of the function �F given
by (40) ful®ls the requirement stated by (29). Therefore, associated viscoplasticity is obtained if we
choose the potential function G as G=F and then the formulation of Perzyna (1971) is recovered even
though Perzyna did not provide any expressions for the ¯uxes _ka: If, in addition, F is a convex function
the dissipation inequality is evidently ful®lled. It is emphasized that here we have proved this latter
statement in general and not just by considering in the spirit of Simo and Honein (1990) the limit case
where Z�4 0. For associated viscoplasticity, the Perzyna formulation is illustrated in Fig. 2.

To be strict, in the original Perzyna formulation the parameter Z� is only allowed to depend on the
temperature y, whereas Z� as de®ned by (48) includes the quantity �23�@G=@sij ��@G=@sij ��1=2 which, in
general, may depend on the stresses sij and the hardening parameters Ka. However, in most cases, for
instance, when the potential function G is chosen in terms of the von Mises, Drucker±Prager or
Coulomb criterion the quantity (@G/@sij)(@G/@sij) becomes a constant and the present formulation
coincides exactly with the original Perzyna model.

To substantiate that the present formulation seems to be the most natural Perzyna formulation, we
next demonstrate that the strict Perzyna formulation, i.e. Z�=Z(y ) may be obtained within the present
concept, but this will always lead to a format that, per de®nition, becomes non-associated. For this
purpose, we observe that �F de®ned by (18) in general depends also on sij and Ka. Since also the
potential function depends on these quantities, cf (25), we may choose the function �F as

Fig. 2. Associated Perzyna formulation.
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�F � j

0BB@Z�y�
_Evp

eff�����������������������
2

3

@G

@sij

@G

@sij

s 1CCA �49�

For the static yield function F we choose again (42). Since f= 0 holds during viscoplastic development,
we obtain with (20) that

F � j

0BB@Z�y�
_Evp

eff�����������������������
2

3

@G

@sij

@G

@sij

s 1CCA �50�

This expression is similar to (27). As previously, we have _Evp
eff �L�23�@G=@sij ��@G=@sij ��1=2 and insertion

into (50) gives

F � j�Z�y�L� �51�
This expression is similar to (28). Introducing again the function f, that is the inverse function to j, we
get

f�F � � Z�y�L �52�
Solving for L and insertion into the evolution laws (26) we are then with (46) led to

_Evp
ij �
hf�F �i

Z
@G

@sij
; _ka � hf�F �iZ

@G

@Ka
�53�

where Z=Z(y ); this formulation corresponds exactly to the original Perzyna model. However, an
important observation is that this format never can be associative even when G=F. This is a
consequence of the choice of �F given by (49), which does not ful®l the requirement stated in (29). We
therefore conclude that (47) and (48) seem to be the most natural Perzyna formulation since it includes
the associativity as a special case.

Finally, it may be of interest to evaluate the situation where the parameter Z 4 0. It then follows
from (40) or (49) that F

-
=j(0), i.e. F-=0, cf (19). Since f=0 holds during viscoplasticity and as f=FÿF-,

if follows that F = 0, but this is precisely the requirement for having obtained inviscid plasticity.
Therefore, when Z 4 0 the limit of inviscid plasticity is achieved. Perzyna viscoplasticity therefore
reduces to inviscid plasticity if either Z4 0 or E.ij4 0.

8. Odquist creep

Let us next derive the classic Odquist (1936) creep model to model secondary creep; the Odquist
model represents the multiaxial formulation of Norton creep. Assume an associated formulation with no
internal parameters, i.e.

G � F; ka � 0, i:e: Ka � 0 and F � F�sij, y� �54�
Choose F as

F � seff where seff � �32sklskl�1=2 �55�
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and sij=sijÿdijskk/3 denote the deviatoric stresses. With these expressions, the Perzyna formulation (47)
and (48) reduces to

_Evp
ij �

3

2

hf�seff �i
Z�y�seff

sij �56�

For the function f, we may select

f�seff � � Csneff �57�
where C is a positive constant and nr1. Then (56) takes the form

_Evp
ij �

3

2
C
snÿ1eff

Z�y� sij �58�

It appears that we have recovered the secondary creep model of Odquist (1936). In the literature, (58) is
often attributed to Bodner and Partom (1972). Moreover, if we in (58) choose 1/Z(y )=exp(ÿQ/(Ry ))
where R is the universal gas constant and Q is the activation energy, the in¯uence of absolute
temperature is modelled via the exponential Arrhenius expression.

Since we have an associated formulation, the dissipation inequality is certainly ful®lled. However, this
statement is easily checked. With (8), (54) and (58) and taking advantage of (55) we obtain g � sij_E

vp
ij �

Csn�1eff =Z which certainly is non-negative.
The Odquist model does not involve a purely elastic region; even so the present formulation that

works with a static yield surface contains the Odquist model as a special case. The explanation for this
apparent contradiction is that the static yield function F de®ned by (55) always ful®ls Fr 0, i.e. no
purely elastic response occurs, cf (23) and (24).

9. Multiple yield and potential functions

Previously, we assumed that only one smooth yield and one smooth potential surface existed. Let us
next consider the situation where multiple yield and potential surfaces meet at a corner. For inviscid
plasticity, the associated case has been treated by Koiter (1953, 1960) and later contributions given by
Mandel (1965), Hill (1966), Sewell (1973, 1974) and Simo et al. (1988). Treatment of the more general
case of non-associated inviscid plasticity can be found in Ottosen and Ristinmaa (1996). First, we shall
consider associated viscoplasticity. For the state in question, let Fmax denote the total number of
dynamic yield surfaces that meet at a corner, i.e.

f I � f I�sij, Ka, _Evp�J �
ij , _k�J �a , y� I, J � 1, 2, . . . , Fmax �59�

where we denote _Evp�J �
ij and _k�J �a as the ¯uxes associated with the dynamic yield surface J; these ¯uxes

will be de®ned later on and we note that the format (59) allows f I to depend not only on the ¯uxes
associated with the particular yield surface in question, but also on ¯uxes from other yield surfaces.
Each of the individual dynamic yield surfaces is assumed to be smooth. Similar to (13) we have

f IR0 �60�
and f I>0 is not allowed.

To derive the associated viscoplastic formulation, use is again made of the postulate of maximum
dissipation where the dissipation, as previously, is given by (8), i.e. g � sij_E

vp
ij �Ka _ka: We are then faced
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with the following problem: for given ¯uxes _Evp
ij and _ka and temperature y, ®nd those stresses sij and

conjugated forces Ka that minimize the quantity ÿg subjected to the constraint expressed by (60).
Following, for instance, Luenberger (1984) p. 314, we are then led to

_Evp
ij �

XFmax

I�1
LI @ f

I

@sij
; _ka �

XFmax

I�1
LI @ f

I

@Ka
�61�

Note that the summation convention is not used when capital letters or Greek letters are used as
superscripts. Moreover, the minimization problem leads to the Kuhn±Tucker relations expressed by

LIr0; LIf I � 0 for all I � 1, 2, . . . , Fmax �62�
and the functions f I are required to be convex and smooth. We shall de®ne the ¯uxes associated with
yield surface f I by

_Evp�I �
ij � LI @f

I

@sij
; _k�I �a � LI @ f

I

@Ka
�63�

These ¯uxes therefore, de®ne the contribution from yield function I to the evolution laws in (61).
To derive a non-associated formulation, let the potential functions meeting at a corner be de®ned by

gF � gF�sij, Ka, _�E
vp�Y�
ij , _�k

�Y�
a , y� F, Y � 1, 2, . . . , Gmax �64�

where the total number of smooth potential surfaces meeting at the corner is denoted by Gmax and
_�E

vp�Y�
ij , _�k

�Y�
a are ¯uxes to be de®ned in a moment. Moreover, we have indicated that gF may depend on

all Gmax ¯uxes. Apparently, this will cause problems for cases when Fmax$Gmax, cf (59). To solve this
obstacle, the following evolution laws are postulated

_Evp
ij �

XFmax

I�1
_Evp�I �
ij ; _Evp�I �

ij � LI
XGmax

F�1
mIF

@gF

@sij

_ka �
XFmax

I�1
_k�I �a ; _k�I �a � LI

XGmax

F�1
mIF

@gF

@Ka

LIr0 �65�

together with the constraints expressed by (60) and (62). In (65), _Evp�I �
ij again de®nes the contribution of

viscoplastic strain rate from the yield surface no. I. Moreover, the matrix m IF(Fmax � Gmax) has been
introduced. Since the quantity L I is related to the corresponding f I, cf (60) and (62), this matrix
controls how much a potential function should contribute to a certain yield function. Expressions (65)
may be re-cast into

_Evp
ij �

XGmax

F�1
_�E

vp�F�
ij ; _�E

vp�F�
ij � �L

F @gF

@sij

_ka �
XGmax

F�1
_�k
�F�
a ; _�k

�F�
a � �L

F @gF

@Ka

�L
F �

XFmax

I�1
LImIF �66�

where _�E
vp�F�
ij and _�k

�F�
a denote the contribution of viscoplastic strain rate and the internal variable ¯ux,

respectively, from the potential function no. F. With the equivalent expressions (65) and (66), both
de®nition (59) and (64) are valid expressions. The non-associated formulation (65) reduces to the
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associated formulation (61) if Gmax=Fmax, g
I=f I and m IF=d IF, where d IF is the generalized Kronecker

delta.
We may mention that instead of the format given by (65) and (66), one may adopt a formulation

similar to that used by Ottosen and Ristinmaa (1996) for inviscid plasticity, but for viscoplasticity the
present approach turns out to be more simple.

The non-associated formulation (65) ful®ls the dissipation inequality (8) in the following situation: for
given ¯uxes and temperature, let each potential function gF be a smooth and convex function in the sij,
Ka-space. For each F-value, the expression gF=CF=constant then describes a surface in that space. If
the value of gF at the origin of the space is less than CF=constant, then it follows directly that
formulation (65) ful®ls the dissipation inequality (8), cf Eringen (1975).

For smooth surfaces, we saw that the condition f= 0 enables one to determine the multiplier L. In a
similar fashion, for multiple surfaces meeting at a corner, the conditions f I=0, where I = 1, 2, . . . ,
Fmax, will enable us to determine Fmax multipliers L I. Now, consider (65) written as

_Evp�I �
ij � LIaIij where aIij �

XGmax

F�1
mIF

@gF

@sij
�67�

From (67b), it follows that if Fmax < Gmax we can have a I
ij=0 for @gF/@sij$0, i.e. non-trivial solutions.

The unacceptable implication is that even if L I$0, we may have _Evp�I �
ij � 0: It then follows that we must

require that

Fmax rGmax �68�
It is of interest that condition (68) corresponds to the conclusion arrived at for inviscid corner plasticity,
cf Ottosen and Ristinmaa (1996).

Similar to the situation for smooth surfaces, cf (20) and (25), we shall consider a restricted group of
materials that implies the existence of static yield functions. Similar to (18), we therefore choose
functions �FI with the following properties

�F
I�sij, Ka, _Evp�J �

ij , _k�J �a , y�r0 �69�

and

�F
I�sij, Ka, _Evp�J �

ij � 0, _k�J �a � 0, y� � 0; �F
I�sij, Ka, _Evp�J �

ij 6�0, _k�J �a 6�0, y� > 0 �70�

Moreover, we choose the functions F I(sij, Ka, y ) and express the dynamic yield function f I as

f I�sij, Ka, _Evp�J �
ij , _k�J �a , y� � F I�sij, Ka, y� ÿ �F

I�sij, Ka, _Evp�J �
ij , _k�J �a , y� �71�

From (70) and (71), it then follows that

f I�sij, Ka, _Evp�J �
ij � 0, _k�J �a � 0, y� � F I�sij, Ka, y� �72�

Moreover, (69) and (71) results in

f IRF I �73�
The potential functions will be chosen as

gF � G F�sij, Ka, y� �74�
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In general, we have f I=0 during viscoplastic loading. Then by combining (71) and (65) we ®nd

F I�sij, Ka, y� � �F
I

 
sij, Ka, LJ

XGmax

F�1
mJF

@G F

@sij
, LJ

XGmax

F�1
mJF

@G F

@Ka, y

!
, I � 1, 2, . . . , Fmax �75�

during viscoplastic loading. Since a number of Fmax dynamic yield functions have been assumed to be
active, (75) comprises Fmax equations which allow us to calculate the total Fmax numbers of L J values.
Expression (75) is similar to (28) valid for smooth surfaces.

Similar to the discussion related to (18)±(20), it is easily shown that formulation (69)±(71) implies the
FI becomes the static yield surfaces and that viscoplastic loading or elastic loading can be evaluated in a
form similar to (23) and (24).

10. Perzyna corner viscoplasticity

Let us next generalize the Perzyna formulation (47) and (48) so that it holds at a corner. We shall
consider the general case where the number of yield surfaces and potential surfaces di�er, but due to
(68) we have FmaxrGmax.

Similar to (41) we de®ne the e�ective viscoplastic strain rate corresponding to yield surface I by

_Evp�I �
eff �

������������������������
2

3
_Evp�I �
ij _Evp�I �

ij

r
� LI

��������������������������������������������������������
2

3

XGmax

Y�1
mIY

@G Y

@sij

XGmax

F�1
mIF

@G F

@sij

vuut �76�

Then in a manner similar to (40), we next choose the functions �F(I ) de®ned by (69) as

�F
I � jI

 XFmax

J�1
ZIJ�y�_Evp�J �

eff

!
�77�

where Z IJ denotes a matrix with size (Fmax � Fmax), which may depend on the temperature. This matrix
determines how the various _Evp�I �

eff -values in¯uence the development of �FI. During viscoplastic
development, we have that f I=0, which with (71) and (77) yields

F I � jI

0B@XFmax

J�1
ZIJLJ

���������������������������������������������������������
2

3

XGmax

Y�1
mJY

@G Y

@sij

XGmax

F�1
mJF

@G F

@sij

vuut
1CA �78�

where advantage was taken of (76). This expression is similar to (75) and it provides the determination
of all L I-values. To determine these L I-values explicitly, we assume similar to (43) that

jI�0� � 0 and jI are monotonic increasing functions �79�
Each j I-function therefore possesses an inverse function f I, i.e. (78) implies that

fI�F I� �
XFmax

J�1
ZIJLJ

���������������������������������������������������������
2

3

XGmax

Y�1
mJY

@G Y

@sij

XGmax

F�1
mJF

@G F

@sij

vuut �80�

In order to be able to derive a format where this non-homogeneous equation system allows a unique
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L I-solution, we must require the matrix Z IJ to be non-singular. It therefore possesses an inverse ~ZKI

such that

XFmax

I�1
~ZKIZIJ � dKJ �81�

where dKJ denotes a generalized Kronecker delta. Use of (81) in (80) gives the following L I-values

LJ �
XFmax

I�1
~ZJI

fI�F I����������������������������������������������������������
2

3

XGmax

Y�1
mJY

@G Y

@sij

XGmax

F�1
mJF

@G F

@sij

vuut �82�

This expression corresponds to (45) valid for smooth surfaces.

10.1. Independent hardening

Let us consider the particular case of independent hardening, i.e. hardening of one yield surface does
not in¯uence the other yield surfaces. Moreover, we shall consider the general non-associated situation,
i.e. FmaxrGmax. Referring to (77) independent hardening can be modelled by assuming that

ZIJ � ZIdIJ �83�
Then (77) takes the form �F

I�jI�ZI_Evp�I �
eff �, i.e. only _Evp�I �

eff will in¯uence the corresponding yield function
f I, cf also (71). This implies that the speci®c dynamic yield surface hardens in a manner that is
independent on the hardening of the remaining dynamic yield surfaces. Assumption (83) may therefore
be viewed as an assumption of independent hardening of the dynamic yield surfaces. With (83), (82)
takes the form

LI � hf
I�F I�i
Z�I

�84�

where

Z�I � ZI�y�
��������������������������������������������������������
2

3

XGmax

Y�1
mIY

@G Y

@sij

XGmax

F�1
mIF

@G F

@sij

vuut �85�

Taking advantage of (84) in (65) the most general form of the evolution laws for independent hardening
Perzyna viscoplasticity becomes

_Evp
ij �

XFmax

I�1

 
hfI�F I�i

Z�I
XGmax

F�1
mIF

@G F

@sij

!

_ka �
XFmax

I�1

 
hfI�F I�i

Z�I
XGmax

F�1
mIF

@G F

@Ka

!
�86�

Let us ®nally specialize to the important situation where Fmax=Gmax and m IF=d IF. We then obtain
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_Evp
ij �

XFmax

I�1

hfI�F I�i
Z�I

@G I

@sij
; _ka �

XFmax

I�1

hfI�F I�i
Z�I

@G I

@Ka
�87�

It is recalled that the notation in (87) should be understood such that, for instance

_Evp
ij �
hf1�F 1�i

Z�1
@G 1

@sij
� hf

2�F 2�i
Z�2

@G 2

@sij
� � � � � hf

Fmax �F Fmax �i
Z�Fmax

@G Fmax

@sij
�88�

With (87), it appears that we have obtained a generalization of the original Perzyna model so that it
holds even for corner viscoplasticity. If an associated formulation is adopted, i.e. G I=F I, the
formulation follows directly from the postulate of maximum dissipation and the dissipation inequality
(8) is then certainly ful®lled, when F I are smooth and convex functions. A ¯ow rule analogous to (88)
was already proposed by Prager (1961) for viscoplastic solid, cf also Zarka (1972).

Finally, let us meet the argument stated by Simo et al. (1988) against the ¯ow rule of the type (88)
and often referred to in the literature as an objection against corner Perzyna viscoplasticity. Consider
associated viscoplasticity and the case where a corner is formed by two intersecting yield surfaces as
shown in Fig. 3. Moreover, consider the case of a non-hardening material model, i.e. no internal
variables appear in the model. For inviscid plasticity, assuming that the current stress state is given by
sij, cf Fig. 3, it then follows that the inviscid corner region is formed by the tensors Dijkl @F

1/@skl and
Dijkl @F

2/@skl,, e.g. Simo et al. (1988), Ottosen and Ristinmaa (1996). Consider now viscoplasticity and
the stress state �sij indicated in Fig. 3; evidently this stress point is located outside the inviscid corner
region, but inside the viscoplastic corner region. The argument of Simo et al. (1988) is based on the
conception that in the limit when Z �1 4 0 and Z �2 4 0 both yield surfaces are active since F 1 > 0 and
F 2 > 0; as a consequence (88) should predict the return path �sij4sij: This is clearly in contradiction
with the inviscid solution, which is s 'ij.

Analytically, it is easily shown that Z �1 4 0 and Z �2 4 0 indeed implies the inviscid solution. From
(78) with Z IJ 4 0 and property (79), it follows that F I 4 0. In the limit we therefore have F I=0 and
thereby _FI=0. Similar to the previous discussion of the limit case of inviscid plasticity for smooth
surfaces, we are then led exactly to the expressions that control inviscid plasticity and thereby also to

Fig. 3. Return path �sij4sij when Z �14 0 and Z �24 0 according to Simo et al. (1988).
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the corresponding loading/unloading criteria. In the present case where corner inviscid plasticity is
approached, we refer to Ottosen and Ristinmaa (1996) for further details.

However, since the geometrical argument of Simo et al. (1988), see Fig. 3, is frequently referred to in
the literature, we shall also illustrate geometrically that inviscid corner plasticity is obtained in the limit
when Z �14 0 and Z �24 0. Referring again to Fig. 3, it is observed that this problem formulation is not
well de®ned, as no information is provided on how the stress point �sij is obtained. We therefore de®ne
the problem in the following concise fashion: we start out from the corner position sij shown in Fig. 3.
The strain rate _Eij and time increment Dt are considered as given and ®xed and we then evaluate the
response when Z �14 0 and Z �24 0.

In order to simplify the discussion, we assume isothermal conditions and associated viscoplasticity. In
the case of two yield functions, (88) can with (9) be written as

_sij � _se
ij ÿ _svp�1�

ij ÿ _svp�2�
ij �89�

where

_se
ij � Dijkl_Ekl

_svp�1�
ij � hf

1�F 1�i
Z�1

Dijkl
@F 1

@skl

_svp�2�
ij � hf

2�F 2�i
Z�2

Dijkl
@F 2

@skl
�90�

The corner position is located at point H in Fig. 4, which is the start position denoted by (sij)t. For

Fig. 4. Return path from stress point A when Z �14 0 and Z �24 0.
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given strain rate _Eij and time increment Dt we want to determine the corresponding end position denoted
(sij)t+Dt. Integration of (89) gives

Dsij � Dse
ij ÿ Dsvp�1�

ij ÿ Dsvp�2�
ij �91�

where

Dsij � �sij �t�Dt ÿ �sij �t

Dse
ij � Dijkl_EklDt

Dsvp�1�
ij �

�t�Dt
t

hf1�F 1�i
Z�1

Dijkl
@F 1

@skl
dt �

 
hf1�F 1�i

Z�1
Dijkl

@F 1

@skl

!
�t

Dt

Dsvp�2�
ij �

�t�Dt
t

hf2�F 2�i
Z�2

Dijkl
@F 2

@skl
dt �

 
hf2�F 2�i

Z�2
Dijkl

@F 2

@skl

!
�t

Dt �92�

Here the mean value theorem was used and the notation � � �t indicates that the quantity ( ) is evaluated
at some state between t and t+Dt. Evidently, when Dt 4 0, (92) will reduce to the rate form given by
(90), i.e. that the results obtained by using (92) reduces to the behaviour of (90) when Dt 4 0. As both
_Eij and Dt are considered as ®xed and given quantities, Ds e

ij is a ®xed quantity. Let us assume that Ds e
ij

is given as in Fig. 4, i.e. directed from the corner to point A. For the case Z �1 41 and Z �2 41, it
follows from (91) and (92) that Dsij=Ds e

ij, i.e. the stress point will move to point A. For some ®nite
values of Z �1 and Z �2 we will end up at point B. It turns out that the location of the stress point B is
completely determined by the two tensors Dijkl @F

1/@skl, Dijkl @F
2/@skl, which in the present case of

plane hyper-surfaces are constant tensors, and the two positive scalars hf 1(F 1)i/Z �1 and hf 2(F 2)i/Z �2, cf
(91) and (92). An illustration of the decomposition (91) which leads to point B is also shown in Fig. 4.

Considering again the same _Eij and Dt, but now with smaller values of Z �1 and Z �2, we will
for su�ciently small Z �1- and Z �2-values end up at point C in Fig. 4. Referring to the expression for
Ds vp(1)

ij and Ds vp(2)
ij given by (92), the quantities � � �t are now evaluated at some state between point H

and C. It follows that at point C, we have Ds vp(1)
ij $0 and Ds vp(2)

ij =0, i.e. Ds vp(1)
ij goes from point C to

A and CA is parallel with Dijkl @F
1/@skl. Eventually, considering again the same _Eij and Dt, but now with

Z �1 4 0 and Z �2 4 0, it follows that we have obtained the return path ABCD shown in Fig. 4. In the
present case with plane hyper-surfaces, the tensor Dijkl @F

1/@skl is constant and point D, C and A are,
therefore, located on a straight line parallel with Dijkl @F

1/@skl. It appears that Z �1 4 0 and Z �2 4 0
leads exactly to the inviscid plasticity solution given by point D.

Turning to the case when Ds e
ij goes from H to E, cf Fig. 5, i.e. the border of the inviscid corner

region. For some ®nite values of Z �1 and Z �2, the increment leads to point G, see Fig. 5. This point can
never cross the surface F 2=0, since Ds vp(2)

ij 4 0 when F 24 0. In conclusion, when Z �14 0 and Z �24
0, the increment will bring us to the point H, i.e. to the corner. Evidently, when the stress rate Ds e

ij is
located in the inviscid corner EHE ', e.g. point F, the increment will lead us to the corner H when Z �14
0 and Z �24 0. Analogous arguments hold if the stress rate Ds e

ij is located to the right of HE '.
When Z �14 0 and Z �24 0, it is concluded that the resulting stress point for viscoplastic loading ends

up at the corner point, if the stress rate _se
ij is located inside the inviscid corner region and the stress

point ends up at one of the static yield surfaces, if the stress rate _se
ij is located outside the inviscid corner
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region. This means that for Z �14 0 and Z �24 0 the model given by (88) reduces exactly to the inviscid
model.

From the previous discussion of smooth surfaces, it is evident that when the total strain rate is
in®nitely small, the limit case of inviscid plasticity emerges. It is easy to show even geometrically that
the correct return path is obtained also for corner viscoplasticity. Let us now consider DEij as a ®xed and
given quantity, where DEij � _EijDt: If _Eij40, we must then have Dt41. A view of expressions (91) and
(92) immediately reveals that the previous arguments where Z �1 4 0 and Z �2 4 0 with ®xed Dt is
analogous to letting Dt 4 1 with ®xed Z �1 and Z �2. Therefore, the correct inviscid corner plasticity
return path is also achieved when the total strain rate is in®nitely small.

10.2. Dependent hardening

If Z IJ is not given by (83), we have dependent hardening where development of one yield surface
in¯uences the development on other yield surfaces. As a speci®c type of dependent hardening, one may
take

ZIJ � Zad
IJ � Zb1

IJ �93�
where 1IJ=1 for all I and J. It is emphasized that independent hardening here refers to the development
of the dynamic yield surfaces. Therefore, the hardening described by (93) should not be mixed up with
Budiansky and Wu (1962) type of hardening, cf Sewell (1973), for inviscid hardening, which controls the
behaviour of the static yield surfaces.

With Za > 0 and Zb > 0 (93) de®nes a positive de®nite matrix and the inverse matrix ~ZIJ therefore
exists. The L I-values can therefore be determined from (82) and the evolution laws are then given by the
previous expressions.

Fig. 5. Actual return paths when Z �14 0 and Z �24 0, which leads to inviscid corner plasticity.
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11. Conclusions

The logical consequences of using a dynamic yield surface to model viscoplasticity within a
thermodynamic framework was discussed. It turned out that the concept allows the use of the postulate
of maximal dissipation and therefore of a straightforward determination of associated viscoplasticity
without relying on subtle regularization and penalty techniques that only hold in the limit when
viscoplasticity degenerates in inviscid plasticity. Moreover, from the de®nitions of the dynamic yield
surface, the static yield surface emerges in a natural way.

The Perzyna viscoplastic model was derived within this concept, where it followed that the original
Perzyna formulation di�ers with a scalar function from the formulation obeying the postulate of
maximum dissipation.

It was also shown that the concept could be extended to include the case of corner viscoplasticity and
a generalization of the Perzyna model was derived. Moreover, it was shown that the corner Perzyna
model reduces exactly to the inviscid case when the viscosity parameters approaches zero. Therefore, the
main argument often adopted in the literature against Perzyna corner viscoplasticity is removed.
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